Geometry and Mathematical Physics Group

Quantum Gravity and Quantum Fields Theory : Physical, Mathematical and Philosophical perspectives

Geometry and Mathematical Physics seminar

Organized by Serguei Barannikov, Daniel Bennequin, Frédéric Hélein, Joseph Kouneiher et Volodya Roubtsov                                                                                       

Place : 175 rue du Chevaleret, Paris 13ème

Website : Geometry and Mathematical Physics seminar



 2011 - 2012




01.12. 2011: Sylvie Paycha (Université de Clermont-Ferrand et Postdam University, Berlin) 

La renormalisation au service de la combinatoire ou comment compter les points entiers sur un cône


Oct. Dec 2011: Bertrand Delamotte (LPTMC)

Renormalisation à la Wilson, lien avec les méthodes perturbatives et applications


2010 - 2011

 10.03.2011: Nguyen Viet Dang (IMJ)


Renormalisation des champs d'après Borcherds, IV : polynôme de Berstein-Sato

03.03.2011: Frédéric Hélein (IMJ)

Renormalisation des champs d'après Borcherds, III : propagateur et fonctions de Green

03.02.2011: Christian Brouder (IMPMC)

Renormalisation des champs d'après Borcherds, II : algèbres de Hopf et théorème de Wick

20.01.2011 : Nguyen Viet Dang (IMJ)

Renormalisation des champs d'après Borcherds, I

04.11.2010: Serguei Barannikov (IMJ)

Batalin-Vilkovisky formalism, equivariant Chern-Simons functional and Hodge theory for matrix integrals

I'll give an introduction to Batalin-Vilkovisky formalism and will explain its application showing that the extended Chern-Simons functional represents equivariantly closed infinite dimensional differential form. The localization of these equivariant differential forms in finite dimensional setting gives formulas representing matrix integrals of Airy type as tau-functions. If the time permits I'll also sketch the application leading to the analogue of Hodge theory fot matrix integrals.

21.10.2010: Boris Kruglikov (University of Tromso, Norway & IHES)

Cartan's 5 variables centennial

In 1910 Elie Cartan completely described the geometry of rank 2 distributions in 5 dimensional spaces and discussed integrability for a pair of overdetermined PDEs with one common characteristic. Exceptional Lie group G_2 was first realized in this paper. In the talk I will discuss what is the counterpart of Cartan's story for rank 2 distributions in general, relate this to the geometry of Monge equations and construct the symmetric models. The talk is based on the joint work with Ian Anderson


Ashoke Sen (Harish-Chandra Research Institute, Allahabad, Inde)`

Black holes and Siegel modular forms

22.04.2010: Frédéric Hélein (IMJ)

Introduction aux théories de BRST et Batalin-Vilkovisky

11.03.2010: Michael Bächtold

Geometry of nonlinear PDEs and secondary calculus

17.03.2010: Jan Manschot